Methods used in Scoping Study

METHODOLOGY AND MAIN FINDINGS
The Biodiversity Scoping Study took place in three main steps and particular findings were documented for every step as follows:

- **STEP 1 - GEOGRAPHICAL MAPPING OF CEMEX SITES AND ASSESSMENT OF THEIR PROXIMITY TO AREAS OF HIGH BIODIVERSITY VALUE**

The first step of the study consisted of mapping all 543 CEMEX cement and aggregate sites and assessing their proximity to areas of high biodiversity value, assuming that the closer a site to a biodiversity area, the likelier the occurrence of an impact, but also the greater the potential for interesting biodiversity initiatives at the site. This was done with a Geographic Information System (GIS). Precise locations of each CEMEX site were provided by CEMEX operations. BirdLife provided the delineation of more than 97,000 biodiversity areas, all of them being recognized by different entities such as international conventions, governments or major conservation NGOs.

The CEMEX sites were classified into three categories based on their proximity to the high biodiversity value areas mapped:

- Overlapping: sites partly or entirely located inside at least one biodiversity area
- Near: sites from which the closest biodiversity area is 0 to 2 km away
- Far: sites from which the closest biodiversity area is more than 2 km away

As shown in Figure 1, the result of this classification is that 50% of the CEMEX sites are located within 2km from a biodiversity area, including 24% - 131 sites - that overlap with such an area. CEMEX sites are the sites with the greatest sensitivity, but also with the greatest opportunities, compared to the other categories. They are thus the focus of further analysis taken in steps 2 and 3.

Figure 1 - Number and percentage of CEMEX sites in the Overlapping, Near and Far categories

![Pie chart showing distribution of CEMEX sites]

Another output of this step is a set of maps and databases giving quantitative and qualitative information on the biodiversity areas surrounding each CEMEX site. Maps and databases can directly inform site level decision making.
STEP 2 - CATEGORIZATION OF OVERLAPPING CEMEX SITES, ACCORDING TO THE BIODIVERSITY IMPORTANCE OF THE AREAS THEY OVERLAP

The second step of the Biodiversity Scoping Study was dedicated to a further prioritization of the 131 overlapping CEMEX sites, looking at the biodiversity value of the areas they overlap. The biodiversity areas considered in the study are all of significant concern for conservation. However, they do not all have the same level of importance in terms of biodiversity value and conservation interest. For the purpose of the study, they were classified into three categories as follows (from the most to the least important): areas of Global Importance, areas of Regional Importance and areas of National Importance; As shown in figure 2.

Biodiversity areas of Global Importance have the greatest value at global level because of the richness of the species and habitats they shelter and/or because they are critical for the conservation of particular species and habitats that are globally threatened.

Biodiversity areas of Regional Importance are important at the regional level but not at the global level.

Biodiversity areas of National Importance are important at country scale but not at regional or global level.

Figure 2 - Number of Overlapping CEMEX sites, according to the importance category of the biodiversity area they overlap

STEP 3 - ANALYSIS OF THE MANAGEMENT PLANS IN PLACE TO ADDRESS BIODIVERSITY ISSUES AT OVERLAPPING CEMEX SITES

This analysis was based on biodiversity management practices at the sites. In the absence of harmonized country regulation, internal requirements were set for the purpose of the study: (i) the sites should have carried out an environmental impact assessment (EIA) and, to the extent not already in existence, established a rehabilitation plan; (ii) these EIA and rehabilitation plans should meet certain criteria to ensure that they integrate biodiversity issues.

As shown in Figure 3, the result of the analysis is that 53% of the Overlapping sites have potential to enhance biodiversity management. These sites require further investigation to identify the specific enhancement opportunities.

It should be noted that a number of sites were found to have already implemented voluntary conservation projects, often with the local BirdLife Partners or other conservation organizations. As part of the future biodiversity strategy of the company, these exemplary practices will be promoted through the development and communication of case studies.
Figure 3 - Number of Overlapping CEMEX sites depending on the plans assessment results

Sites with biodiversity management enhancement
61 sites
Cement: 9 sites
Aggregates: 50 sites

Sites with potential to enhance biodiversity management
70 sites
Cement: 14 sites
Aggregates: 56 sites

Total: 131 Overlapping CEMEX sites

- CLASSIFICATION OF SITES WITH ENHANCEMENT OPPORTUNITIES

Finally, as a result of steps 1, 2 and 3, the Biodiversity Scoping Study classifies the sites according to their national, regional or global relevance, as shown in Figure 4.

Figure 4 - Classification of CEMEX Overlapping sites according to the biodiversity importance of the areas they overlap and to the management plans in place to address biodiversity issues

<table>
<thead>
<tr>
<th>No. sites in areas of Global Importance</th>
<th>No. sites with potential to enhance biodiversity management</th>
<th>No. sites with biodiversity management enhancement</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. sites in areas of Regional Importance</td>
<td>12</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>No. sites in areas of National Importance</td>
<td>25</td>
<td>19</td>
<td>44</td>
</tr>
<tr>
<td>No. sites in areas of National Importance</td>
<td>33</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>61</td>
<td>131</td>
</tr>
</tbody>
</table>