email a friend
printable version
Greater Flamingo Phoenicopterus roseus
BirdLife is updating this factsheet for the 2016 Red List
Please email us with any relevant information

This species has a very large range, and hence does not approach the thresholds for Vulnerable under the range size criterion (extent of occurrence <20,000 km2 combined with a declining or fluctuating range size, habitat extent/quality, or population size and a small number of locations or severe fragmentation). The population trend appears to be increasing, and hence the species does not approach the thresholds for Vulnerable under the population trend criterion (>30% decline over ten years or three generations). The population size is very large, and hence does not approach the thresholds for Vulnerable under the population size criterion (<10,000 mature individuals with a continuing decline estimated to be >10% in ten years or three generations, or with a specified population structure). For these reasons the species is evaluated as Least Concern.

Taxonomic source(s)
AERC TAC. 2003. AERC TAC Checklist of bird taxa occurring in Western Palearctic region, 15th Draft. Available at: # _the_WP15.xls#.
del Hoyo, J.; Collar, N. J.; Christie, D. A.; Elliott, A.; Fishpool, L. D. C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World. Barcelona, Spain and Cambridge UK: Lynx Edicions and BirdLife International.
Knox, A. G.; Collinson, M.; Helbig, A. J.; Parkin, D. T.; Sangster, G. 2002. Taxonomic recommendations for British birds. Ibis 144: 707-710.

Taxonomic note
Phoenicopterus ruber (Sibley and Monroe, 1990, 1993) has been split into P. roseus and P. ruber following Knox et al. (2002), contra SACC (2005).

Distribution and population
This species is regularly seen from West Africa eastward throughout the Mediterranean to South West and South Asia, and throughout sub-Saharan Africa. The Palearctic population (including West Africa, Iran and Kazakhstan) is estimated to number between 205,000 and 320,000, the South West and South Asian populations combined at 240,000, and the sub-Saharan African populations between 100,000 and 120,000 (Delany and Scott 2006). The Palearctic population appears to be increasing, while the Asian and sub-Saharan African populations appear to be stable (Delany and Scott 2006).

Trend justification
The overall population trend is increasing, although some populations may be stable and others have unknown trends (Wetlands International 2006).

Behaviour Juveniles, and to a lesser extent adults (Mateo et al. 1998), are prone to irregular nomadic or partially migratory movements throughout the species's range in response to water-level changes (Snow and Perrins 1998, Hockey et al. 2005) or food availability (Brown et al. 1982). Members of the Palearctic population are partially migratory (del Hoyo et al. 1992, Snow and Perrins 1998) and regularly travel to warmer regions in the winter via favoured stop-over sites (del Hoyo et al. 1992) (non-breeders may be present all year round in the wintering areas) (Snow and Perrins 1998, Amat et al. 2005). In the Mediterranean and West Africa, breeding colonies appear to be linked by a significant frequency of juvenile and adult dispersal and are thus considered to belong to a single metapopulation (Balkiz 2006). Members of the Asian populations move from their breeding sites at inland lakes to coastal wetlands during non-breeding periods (Balachandran 2007), and when not breeding the sub-Saharan African population tends to disperse among the alkaline-saline lakes and wetlands of eastern and southern Africa (McCulloch et al. 2003, Baker et al. 2006). The Palearctic population breeds regularly from March to June in large dense single-species colonies of up to 20,000 pairs (occasionally up to 200,000 pairs) (del Hoyo et al. 1992) and in some regions may undergo a post-breeding flightless moult period where adults gather in flocks on inaccessible waters (Flint et al. 1984). The Asian and sub-Saharan populations breed irregularly following the rains, often in large mixed colonies with Lesser Flamingo Phoeniconaias minor (Brown and Root 1971, McCulloch and Irvine 2004, Balachandran 2007). The species is gregarious and commonly occurs in flocks of 100 or more outside of the breeding season (Brown et al. 1982), with thousands often flocking together (Brown et al. 1982) in areas rich in food or at freshwater inlets of saline or alkaline lakes to drink and bathe (Snow and Perrins 1998). In sub-Saharan Africa, the species may also join large flocks of non-breeding Lesser Flamingo. The species is a bottom feeder (Snow and Perrins 1998) and forages both by day and night (Brown et al. 1982), feeding by filtering particles through tiny platelets in the bill (Snow and Perrins 1998). It also often roosts at night in large flocks (Brown et al. 1982). Habitat The species inhabits shallow (c.1 m deep over a large area) (Snow and Perrins 1998) eutrophic waterbodies (Hockey et al. 2005) such as saline lagoons, saltpans and large saline or alkaline lakes (Brown et al. 1982, del Hoyo et al. 1992) up to pH 11 (Snow and Perrins 1998). It will also frequent sewage treatment pans, inland dams (Hockey et al. 2005), estuaries (Brown et al. 1982) and coastal waters (Diawara et al. 2007), seldom alighting on freshwater but commonly bathing and drinking from freshwater inlets entering alkaline or saline lakes (Brown et al. 1982). It nests and roosts on sandbanks (Brown et al. 1982, del Hoyo et al. 1992), mudflats (del Hoyo et al. 1992), islands (Brown et al. 1982) or boggy, open shores (Flint et al. 1984). Diet Its diet consists of crustaceans (del Hoyo et al. 1992) (especially brine shrimp Artemia salina) (Brown et al. 1982), molluscs, annelid worms, larval aquatic insects, small fish, adult terrestrial insects (e.g. water beetles, ants), the seeds or stolons of marsh grasses, algae, diatoms and decaying leaves (del Hoyo et al. 1992). It may also ingest mud in order to extract organic matter (e.g. bacteria) (del Hoyo et al. 1992). Breeding site The species nests in large dense colonies on mudflats or islands of large waterbodies, occasionally also on bare rocky islands (del Hoyo et al. 1992), with a distance between neighbouring nests of between 20 and 50 cm (Snow and Perrins 1998). The nest is usually an inverted cone of hardened mud (Flint et al. 1984) with a shallow depression on the top (alternatively it may be a small pile of stones and debris when mud is not available) (del Hoyo et al. 1992). Management information The removal of sand polluted with lead shot from a salt-lake in Cyprus was successful in significantly reducing the numbers of deaths due to lead poisoning (Miltiadou 2005). At two colonies (one in France and one in Spain) management techniques to counteract erosion and the lack of suitable nesting islands were successfully applied in order to encourage breeding by the species (Martos and Johnson 1996).

The species suffers from low reproductive success if exposed to disturbance at breeding colonies (Ogilvie and Ogilvie 1986, Yosef 2000) (e.g. from tourists, low-flying aircraft (Ogilvie and Ogilvie 1986) and especially all-terrain vehicles (Yosef 2000)), or if water-levels surrounding nest-sites lower (resulting in increased access to and therefore predation from ground predators such as foxes and feral dogs) (Miltiadou 2005). The lowering of water levels in lakes can also lead to hyper-salinity which may affect food resources (Nasirwa 2000). Other threats to the species's habitat include effluents from soda-ash mining (Nasirwa 2000, Hockey et al. 2005), pollution from sewage and heavy metal effluents from industries (Nasirwa 2000). The species also suffers mortality from lead poisoning (lead shot ingestion) (Mateo et al. 1998, Miltiadou 2005), collisions with fences and powerlines (Hockey et al. 2005), and from diseases such as tuberculosis, septicemia (Nasirwa 2000) and avian botulism (van Heerden 1974). Utilisation In Egypt large numbers of adults are shot or captured to be sold in markets (del Hoyo et al. 1992), and egg collecting from colonies occurs in some areas (this may become a threat) (Ogilvie and Ogilvie 1986).

Amat, J. A.; Rendón, M. A.; Rendón-Martos, M.; Garrido, A.; Ramírez, J. M. 2005. Ranging behaviour of greater flamingos during the breeding and post-breeding periods: linking connectivity to biological processes. Biological Conservation 125: 183-192.

Baker, N. E.; Baker, E. M.; Van den Bossche, W.; Biebach, H. 2006. Movements of three Greater Flamingos Phoenicopterus ruber roseus fitted with satellite transmitters in Tanzania. Waterbirds around the world. In: Boere, G. C.; Galbraith, C. A.; Stroud, D. A. (ed.), Waterbirds around the world, pp. 239-244. The Stationery Office, Edinburgh, UK.

Balachandran, S. 2007. Current status of Greater Flamingo Phoenicopterus roseus at major coastal wetlands along the east coast of India with special emphasis on population decline. Flamingo.

Balkiz, Ö. 2006. Dynamique de la metapopulation de flamants roses en Méditerranée: implications pour la conservation. Sciences et techniques du Languedoc, Université Montpellier II.

Brown, L. H.; Root, A. 1971. The breeding behaviour of the Lesser Flamingo Phoeniconaias minor. Ibis 113: 147-172.

Brown, L.H., Urban, E.K. and Newman, K. 1982. The Birds of Africa, Volume I. Academic Press, London.

del Hoyo, J.; Elliot, A.; Sargatal, J. 1992. Handbook of the Birds of the World, vol. 1: Ostrich to Ducks. Lynx Edicions, Barcelona, Spain.

Delany, S.; Scott, D. 2006. Waterbird population estimates. Wetlands International, Wageningen, The Netherlands.

Diawara, Y.; Arnaud, A.; Araujo, A.; Béchet, A. 2007. Nouvelles données sur la reproduction et l'hivernage des flamants roses Phoenicopterus roseus en Mauritanie et confirmation d'échanges avec les populations méditerranéennes. Ostrich 78: 469-474.

Flint, V.E., Boehme, R.L., Kostin, Y.V. and Kuznetsov, A.A. 1984. A field guide to birds of the USSR. Princeton University Press, Princeton, New Jersey.

Hockey, P.A.R., Dean, W.R.J. and Ryan, P.G. 2005. Roberts birds of southern Africa. Trustees of the John Voelcker Bird Book Fund, Cape Town, South Africa.

IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015-4. Available at: (Accessed: 19 November 2015).

Martos, M. R.; Johnson, A. R. 1996. Management of Nesting Sites for Greater Flamingos. Colonial Waterbirds 19: 167-183.

Mateo, R., Belliure, J., Dolz, J.C., Aguilar-Serrano, J.M. and Guitart, R. 1998. High prevalences of lead poisoning in wintering waterfowl in Spain. Archives of Environmental Contamination and Toxicology 35: 342-347.

McCulloch, G.; Aebischer, A.; Irvine, K. 2003. Satellite tracking of flamingos in southern Africa: the importance of small wetlands for management and conservation. Oryx 37: 480-483.

McCulloch, G.; Irvine, K. 2004. Breeding of Greater and Lesser Flamingos at Sua Pan, Botswana, 1998-2001. Ostrich 75: 236-242.

Miltiadou, M. 2005. Wintering populations, breeding attempts and lead poisoning of the Great Flamingo Phoenicopterus roseus on the salt lakes of Cyprus. Flamingo 13: 31-35.

Nasirwa, O. 2000. Conservation status of flamingos in Kenya. Waterbirds 23: 47-51.

Ogilvie, M.; Ogilvie, C. 1986. Flamingos. Alan Sutton, Gloucester.

Snow, D.W. and Perrins, C.M. 1998. The Birds of the Western Palearctic, Volume 1: Non-Passerines. Oxford University Press, Oxford.

van Heerden, J. 1974. Botulism in the Orange Free State goldfields. Ostrich 45(3): 182-184.

Yosef, R. 2000. Individual distances among Greater Flamingos as indicators of tourism pressure. Waterbirds 23: 26-31.

Further web sources of information
Detailed species account from Birds in Europe: population estimates trends and conservation status (BirdLife International 2004)

Detailed species account from Birds in Europe: population estimates, trends and conservation status (BirdLife International 2004)

Explore HBW Alive for further information on this species

Search for photos and videos, and hear sounds of this species from the Internet Bird Collection

Text account compilers
Butchart, S., Malpas, L., Ekstrom, J. & Ashpole, J

Childress, B.

IUCN Red List evaluators
Butchart, S. & Symes, A.

Recommended citation
BirdLife International (2016) Species factsheet: Phoenicopterus roseus. Downloaded from on 27/10/2016. Recommended citation for factsheets for more than one species: BirdLife International (2016) IUCN Red List for birds. Downloaded from on 27/10/2016.

This information is based upon, and updates, the information published in BirdLife International (2000) Threatened birds of the world. Barcelona and Cambridge, UK: Lynx Edicions and BirdLife International, BirdLife International (2004) Threatened birds of the world 2004 CD-ROM and BirdLife International (2008) Threatened birds of the world 2008 CD-ROM. These sources provide the information for species accounts for the birds on the IUCN Red List.

To provide new information to update this factsheet or to correct any errors, please email BirdLife

To contribute to discussions on the evaluation of the IUCN Red List status of Globally Threatened Birds, please visit BirdLife's Globally Threatened Bird Forums.

Additional resources for this species

ARKive species - Greater flamingo (Phoenicopterus roseus) 0

Key facts
Current IUCN Red List category Least Concern
Family Phoenicopteridae (Flamingos)
Species name author Pallas, 1811
Population size mature individuals
Population trend Increasing
Distribution size (breeding/resident) 5,060,000 km2
Country endemic? No
Links to further information
- Additional Information on this species
- Projected distributions under climate change
- 2015 European Red List assessment