email a friend
printable version
Eurasian Oystercatcher Haematopus ostralegus
BirdLife is updating this factsheet for the 2016 Red List
Please email us with any relevant information

This species has been uplisted to Near Threatened as it almost meets the requirements for listing as threatened under criteria A2ab+3b+4ab. It has an extremely large range and population size, and the largest flyway population increased strongly between the 1960s and 1990s but subsequently declined moderately rapidly. The recent decline may be part of a longer-term fluctuation and the population should be monitored carefully to ascertain whether it shows signs of stabilising. None of the remaining flyway populations have increased. Should new information suggest declines are continuing or that actions to benefit the species, such as limiting mechanical shellfishery operations, are not leading to population recoveries, the species would merit uplisting to a higher threat category.

Taxonomic source(s)
del Hoyo, J.; Collar, N. J.; Christie, D. A.; Elliott, A.; Fishpool, L. D. C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World. Barcelona, Spain and Cambridge UK: Lynx Edicions and BirdLife International.
Turbott, E. G. 1990. Checklist of the birds of New Zealand. Ornithological Society of New Zealand, Wellington.

Taxonomic note
Haematopus ostralegus (del Hoyo and Collar 2014) was previously split as H. ostralegus and H. finschi following Sibley and Monroe (1990, 1993).

Nominate ostralegus 40-47.5 cm, finschi c. 46 cm. Breeding adult has black head, neck, upper breast, scapulars, upperwing coverts and tail (Hockey et al. 2013). White middle and lower back, rump, uppertail coverts, lower breast and belly. Broad white wingbar from inner secondaries to middle primaries. Red eye and eye-ring. Bill orange-red. Legs pink. Bill length of Palearctic races increases from west to east: ostralegus (male 76 mm, female 81 mm); longipes (male 78 mm, female 89 mm); osculans (male 99 mm, female 96 mm) (Hockey et al. 2013). Female slightly larger than male with longer, thinner bill. Juvenile resembles adult. Races mainly differ on bill length, and extent of white wingbar. Similar species Pied Oystercatcher H. longirostris has narrower white wingbar which does not extend onto primaries. American Oystercatcher H. palliatus has yellow eye and blackish brown dorsal colouration. Magellanic Oystercatcher H. leucopodus has yellow eye and almost wholly white secondaries. Voice Most commonly heard call a repeated over-slurred piping whistle, "peep" or "kleep". Also makes piping whistles in display.

Distribution and population
The species has a wide range comprising four flyway populations. H. o. ostralegus breeds from Iceland and Scandinavia east to north-west Russia, south through U.K. to north-west France, with isolated populations in the Mediterranean, and winters on coasts south to West Africa. H. o. longipes breeds from west and central Russia south to the Black, Caspian and Aral Seas, and east to western Siberia, and winters on coasts from East Africa through Arabia to India; H. o. osculans breeds from coastal north-east Russia through Manchuria to the west and south coasts of the Korean Peninsula south to Fujian province, China, and winters in eastern China and along the west coast of the Korean Peninsula (more than 50% of the population is thought to winter at just one site, Yubu Island, South Korea and a further 25% are thought to winter at Lianyunggang, Jiangsu, China; Melville et al. 2014). H. o. finschi breeds and winters in New Zealand (Hockey et al. 2013). Two thirds of the H. o. finschi population winter in the northern half of the North Island, while breeding is confined to the South Island, mainly east of the Southern Alps (Sagar and Veitch 2014).

Population justification
The global population is estimated to number c. 1,004,000-1,160,000 individuals (Wetlands International 2012). The European population is estimated at 284,000-354,000 pairs, which equates to 568,000-708,000 mature individuals (BirdLife International 2015).

Trend justification
The overall population trend is decreasing. The ostralegus and finschi populations are reported to be declining (Wetlands International 2012, Nagy et al. 2014, Sagar and Veitch 2014, van de Pol et al. 2014, van Roomen et al. 2014a, BirdLife International 2015). The population of ostralegus increased strongly between the 1960s and the 1990s (van de Pol et al. 2014), but has subsequently declined significantly, at a rate exceeding 40% over three generations. The longipes population is reported to be stable (Sarychev and Mischenko 2014, van Roomen et al. 2014b) and the trend for the osculans population is unknown (Melville et al. 2014). Recent declines in the H. o. ostralegus population may however be part of a longer-term fluctuation. Mechanical shellfisheries operations have been severely restricted in the Netherlands and the species's population there may be expected to increase in the future (van de Pol et al. 2014). Further information is needed to confirm whether the population reaches stability or if it continues to decline. Because of this uncertainty, the rate of decline is currently placed in the band 20-29% in three generations although the current rate appears to be higher.

The species breeds on coastal saltmarshes, sand and shingle beaches, dunes, cliff-tops with short grass and occasionally rocky shores, as well as inland along the shores of lakes, reservoirs and rivers or on agricultural grass and cereal fields, often some distance from water (Hayman et al. 1986, del Hoyo et al. 1996). Outside of the breeding season the species is chiefly coastal, frequenting estuarine mudflats, saltmarshes and sandy and rocky shores (del Hoyo et al. 1996). The nest is a shallow scrape on the ground often on raised surfaces (e.g. earth banks) in the open or in short vegetation on cultivated or uncultivated land, cliff-tops, rocky outcrops or clearings in taller vegetation including woods and moorland (Hayman et al. 1986, del Hoyo et al. 1996, Snow and Perrins 1998).

Most populations of this species are fully migratory, inland breeders moving to the coast for the winter (del Hoyo et al. 1996). The species breeds from April to July (Hayman et al. 1986) in solitary pairs or small groups (Flint et al. 1984), during the winter foraging singly or in small groups of up to 10 individuals (Snow and Perrins 1998) and with larger flocks often forming in major bays and estuaries and at roosting sites (Hayman et al. 1986, del Hoyo et al. 1996, Snow and Perrins 1998). When foraging on soft intertidal substrates bivalves and gastropods are the most important food items for this species (del Hoyo et al. 1996). Polychaetes and crustaceans are more important in estuaries however, and molluscs (e.g. mussels, limpets and whelks) are most important on rocky shores (del Hoyo et al. 1996). When inland, prey such as earthworms and insect larvae (e.g. caterpillars and cranefly larvae) are also taken (del Hoyo et al. 1996).

The main threat to the species is the over-fishing of benthic shellfish and the resulting disappearance of intertidal mussel and cockle beds (Atkinson et al. 2003, Verhulst et al. 2004, Ens 2006, van de Pol et al. 2014). Bait digging has also been identified as a threat through loss of prey species and disturbance to the benthic fauna (van de Pol et al. 2014). The species is also threatened by habitat degradation on its wintering grounds due to land reclamation (for example in the Yellow Sea [Melville et al. 2014]), pollution, human disturbance (Kelin and Qiang 2006) (e.g. from construction work or recreational activities [Burton et al. 2002, van de Pol et al. 2014]), coastal barrage construction (Burton 2006), industrial development including development of ports and oil extraction, oil spills, wind farms (Melville et al. 2014) and reduced river flows (Kelin and Qiang 2006). Rapid and extensive land reclamation is reported from staging and wintering grounds for the osculans population in South Korea and China and large-scale planting of Spartina alterniflora on the coast of eastern China may cause loss of foraging and nesting habitats (Melville et al. 2014). Intensive agriculture including frequent mowing of grasslands and high densities of grazing livestock threatens chicks, eggs and nests and high levels of fertilizers and pesticides can reduce soil invertebrate biomass (van de Pol et al. 2014). A reduction in eutrophication is likely to have contributed to declines in some areas, owing to a loss of food resources (van de Pol et al. 2014, H. Meltofte in litt. 2015). 

Sea level rise leading to increased coastal erosion and flooding is contributing to habitat loss in some areas (Melville et al. 2014, van de Pol et al. 2014). Climate change has advanced the average egg-laying date of the species and is likely to reduce recruitment of bivalves, however warmer winters are expected to benefit the species leading to lower winter mortality (van de Pol et al. 2014). Droughts in some inland areas are likely to lead to a loss of suitable habitat (Melville et al. 2014, Sarychev and Mischenko 2014). 

The species is hunted in France but the effects of hunting at the population level are not known (van de Pol et al. 2014). It may be subject to subsistence egg collection in China (Melville et al, 2014) and illegal hunting elsewhere (Sarychev and Mischenko 2014). Eggs and chicks are known to be predated by Corvidae, gulls, American Mink Neovison vison, dogs and foxes Vulpes vulpes (Sarychev and Mischenko 2014). The invasive Pacific Oyster Crassostrea gigas has become abundant in the Oosterschelde (Netherlands) and is increasing in the Dutch Wadden Sea (van de Pol et al. 2014). Eurasian Oystercatcher generally does not eat this species of oyster which is reported to be invading mussel beds and may compete with cockles and mussels thus reducing food availability. However Pacific Oyster beds could also provide an area for mussel beds to re-establish. The species is susceptible to avian influenza so may be threatened by future outbreaks of the virus (Melville and Shortridge 2006).

Breeding range expansion of the finschi population has increased the likelihood of hybridisation with Variable Oystercatcher H. unicolor (Sagar and Veitch 2014). In the northern part of the longipes population breeding range, cessation of grazing in coastal areas leading to development of shrubby vegetation threatens breeding habitats (Sarychev and Mischenko 2014). Conversely, intensive grazing in some areas may pose a threat to this population. Pollution from sewage, heavy metals and organochlorine pesticides have been identified as potential threats for the osculans population (Melville et al. 2014).

Conservation and Research Actions Underway
The species is listed on Annex II (B) of the EU Birds Directive. It is protected by the Wildlife Act 1953 in New Zealand (Sagar and Veitch 2014).

Conservation and Research Actions Proposed
Shellfish fishing at wintering and stop-over habitats needs to be sustainably managed. Ensure key habitat for the species is protected, including implementation of international agreements and ensure legislation protecting the species is enforced. Removing large numbers of gulls (e.g. Larus argentatus and Larus fuscus) from islands may attract higher breeding numbers of the species but may not improve the overall breeding conditions (Harris and Wanless 1997). There is also evidence that the creation of large marine protected areas (MPAs) to protect this species from the threat of anthropogenic shellfish over-fishing may not be an effective management or conservation technique on a global scale, especially if over-fishing continues to occur in adjacent areas (Verhulst et al. 2004). Limit human activities in some areas to prevent disturbance (van de Pol et al. 2014). Limit hunting in France when cold weather pushes large numbers of birds into France (van de Pol et al. 2014). Increase awareness of the species. Support traditional farming methods that benefit the species in the range of the longipes population (Sarychev and Mischenko 2014).

Monitor populations at wintering and breeding areas throughout its range, and record breeding success. Introduce frequent standardised surveys, particularly in the Nordic countries (van de Pol et al. 2014). Research breeding distribution of the osculans population, conduct ringing studies to understand migratory patterns and investigate why Yubu Island in South Korea and southern Shandong/northern Jiangsu in China are key sites for the species (Melville et al, 2014). Identify stopover sites and wintering areas for the longipes population (Sarychev and Mischenko 2014). Undertake population monitoring at breeding and wintering sites in New Zealand to understand habitat use and identify potential threats and suitable management interventions for the species (Sagar and Veitch 2014). Assess impacts of land reclamation on the species in South Korea and China (Melville et al. 2014). Further research is needed to investigate the cause of declines in areas such as Germany and Denmark, to model the potential effects of climate change on the species, assess the impact of human disturbance and to look at population dynamics (van de Pol et al. 2014).

Related state of the world's birds case studies

Atkinson, P. W.; Clark, N. A.; Bell, M. C.; Dare, P. J.; Clark, J. A.; Ireland, P. L. 2003. Changes in commercially fished shellfish stocks and shorebird populations in the Wash, England. Biological Conservation 114: 127-141.

BirdLife International. 2015. European Red List of Birds. Office for Official Publications of the European Communities, Luxembourg.

Brazil, M. 2009. Birds of East Asia: eastern China, Taiwan, Korea, Japan, eastern Russia. Christopher Helm, London.

Burton, N. H. K. 2006. The impact of the Cardiff Bay barrage on wintering waterbirds. In: Boere, G.; Galbraith, C., Stroud, D. (ed.), aterbirds around the world, pp. 805. The Stationary Office, Edinburgh, UK.

Burton, N.H.K., Rehfisch, M.M. and Clark, N.A. 2002. Impacts of Disturbance from Construction Work on the Densities and Feeding Behavior of Waterbirds using the Intertidal Mudflats of Cardiff Bay, U.K. Environmental Management 30(6): 865-871.

Crick, H. Q. P.; Dudley, C.; Glue, D.E.; Thomson, D.L. 1997. UK birds are laying earlier. Nature 388: 526.

Crick, H. Q. P.; Sparks, T.H. 1999. Climate change related to egg-laying trends. Nature 399: 423-424.

del Hoyo, J., Collar, N.J., Christie, D.A., Elliott, A. and Fishpool, L.D.C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World. Lynx Edicions BirdLife International.

del Hoyo, J., Elliott, A., and Sargatal, J. 1996. Handbook of the Birds of the World, vol. 3: Hoatzin to Auks. Lynx Edicions, Barcelona, Spain.

Delany, S.; Scott, D. 2006. Waterbird population estimates. Wetlands International, Wageningen, The Netherlands.

Ens, B. J. 2006. The conflict between shellfisheries and migratory waterbirds in the Dutch Wadden Sea. In: Boere, G.; Galbraith, C., Stroud, D. (ed.), Waterbirds around the world, pp. 806-811. The Stationary Office, Edinburgh, UK.

Flint, V.E., Boehme, R.L., Kostin, Y.V. and Kuznetsov, A.A. 1984. A field guide to birds of the USSR. Princeton University Press, Princeton, New Jersey.

Harris, M. P.; Wanless, S. 1997. The effect of removing large numbers of gull Larus spp. on an island population of oystercatchers Haematopus ostralegus: implications for management. Biological Conservation 82: 167-171.

Hayman, P.; Marchant, J.; Prater, A. J. 1986. Shorebirds. Croom Helm, London.

Hockey, P., Kirwan, G.M. and Boesman, P. 2013. Eurasian Oystercatcher (Haematopus ostralegus). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. and de Juana, E. (eds), Handbook of the Birds of the World Alive, Lynx Edicions, Barcelona.

IUCN. 2015. The IUCN Red List of Threatened Species. Version 2015-4. Available at: (Accessed: 19 November 2015).

Kelin, C.; Qiang, X. 2006. Conserving migratory shorebirds in the Yellow Sea region. In: Boere, G.; Galbraith, C., Stroud, D. (ed.), Waterbirds around the world, pp. 319. The Stationery Office, Edinburgh, UK.

Melville, D. S.; Shortridge, K. F. 2006. Migratory waterbirds and avian influenza in the East Asian-Australasian Flyway with particular reference to the 2003-2004 H5N1 outbreak. In: Boere, G.; Galbraith, C., Stroud, D. (ed.), Waterbirds around the world, pp. 432-438. The Stationary Office, Edinburgh, UK.

Melville, D.S., Gerasimov, Y.N., Moores, N., Yat-Tung, Y. and Bai, Q. 2014. Conservation assessment of Far Eastern Oystercatcher Haematopus [ostralegus] osculans. International Wader Studies 20: 129-154.

Nagy, S., Flink, S. and Langendoen, T. 2014. Waterbird trends 1988-2012: Results of trend analyses of data from the International Waterbird Census in the African-Eurasian Flyway. Wetlands International, Ede.

Olsen, H.; Schmidt, N. M. 2004. Impacts of wet grassland management and winter severity on wader breeding numbers in eastern Denmark. Basic and Applied Ecology 5: 203-210.

Sagar, P. and Veitch, D. 2014. Conservation assessment of the South Island Oystercatcher Haematopus finschi. International Wader Studies 20: 155-160.

Sagar, P. and Veitch, D. 2014. Conservation assessment of the South Island Oystercatcher Haematopus finschi. International Wader Studies 20: 155-160.

Sarychev, V. and Mischenko, A. 2014. Conservation assessment of Haematopus ostralegus longipes. International Wader Studies 20: 33-40.

Sibley, C.G. and Monroe, B.L. 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, USA.

Sibley, C.G. and Monroe, B.L. 1993. A supplement to 'Distribution and Taxonomy of Birds of the World'. Yale University Press, New Haven, USA.

Snow, D.W. and Perrins, C.M. 1998. The Birds of the Western Palearctic, Volume 1: Non-Passerines. Oxford University Press, Oxford.

Vahatalo, A. V.; Rainio, K.; Lehikoinen, A.; Lehikoinen, E. 2004. Spring arrival of birds depends on the North Atlantic Oscillation. Journal of Avian Biology 35: 210-216.

van de Pol, M., Atkinson, P.W., Blew, J., Crowe, O., Delany, S., Duriez, O., Ens, B.J., Hälterlein, B., Hötker, H., Laursen, K., Oosterbeek, K., Petersen, A., Thorup, O., Tjorve, K., Triplet, P. and Yésou, P. 2014. A global assessment of the conservation status of the nominate subspecies of Eurasian Oystercatcher Haematopus ostralegus ostralegus. International Wader Studies 20: 47-61.

van Roomen, M., Langendoen, T., Amini, H., de Fouw, J., Mundkur, T., Thorpe, A. and Ens, B.J. 2014b. Population estimate of Haematopus ostralegus longipes based on non-breeding numbers in January. International Wader Studies 20: 41-46.

van Roomen, M., van Winden, E. and Langendoen, T. 2014. The assessment of trends and population sizes of a selection of waterbird species and populations from the coastal East Atlantic Flyway for Conservation Status Report 6 of The African Eurasian Waterbird Agreement.

Verhulst, S.; Oosterbeek, K.; Rutten, A. L.; Ens, B. J. 2004. Shellfish fishery severely reduces condition and survival of oystercatchers despite creation of large marine protected areas. Ecology and Society 9(1): unpaginated.

Wetlands International. 2012. Waterbird Population Estimates: 5th Edition.

Further web sources of information
Explore HBW Alive for further information on this species

Search for photos and videos, and hear sounds of this species from the Internet Bird Collection

Text account compilers
Butchart, S., Ekstrom, J., Malpas, L., Symes, A., Taylor, J., Van den Bossche, W, Wheatley, H., Ieronymidou, C., Ashpole, J, Burfield, I., Pople, R. & Wright, L

Meltofte, H.

IUCN Red List evaluators
Symes, A.

Recommended citation
BirdLife International (2016) Species factsheet: Haematopus ostralegus. Downloaded from on 21/10/2016. Recommended citation for factsheets for more than one species: BirdLife International (2016) IUCN Red List for birds. Downloaded from on 21/10/2016.

This information is based upon, and updates, the information published in BirdLife International (2000) Threatened birds of the world. Barcelona and Cambridge, UK: Lynx Edicions and BirdLife International, BirdLife International (2004) Threatened birds of the world 2004 CD-ROM and BirdLife International (2008) Threatened birds of the world 2008 CD-ROM. These sources provide the information for species accounts for the birds on the IUCN Red List.

To provide new information to update this factsheet or to correct any errors, please email BirdLife

To contribute to discussions on the evaluation of the IUCN Red List status of Globally Threatened Birds, please visit BirdLife's Globally Threatened Bird Forums.

Additional resources for this species

ARKive species - Oystercatcher (Haematopus ostralegus) 0

Key facts
Current IUCN Red List category Near Threatened
Family Haematopodidae (Oystercatchers)
Species name author Linnaeus, 1758
Population size mature individuals
Population trend Decreasing
Distribution size (breeding/resident) 2,780,000 km2
Country endemic? No
Links to further information
- Additional Information on this species
- 2015 European Red List assessment